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Abstract

Nearest-neighbor (NN) search in high dimensional

space is widely used for the similarity retrieval of images.

Recent research results in the literature reveal that NN-

search might return insigni�cant NNs in high dimensional

space because points could be so scattered that every dis-

tance between them might yield no signi�cant di�erence.

Insigni�cant NNs are troublesome with respect to the e�-

ciency of the similarity retrieval. They have less meaning

for users and also degrades the performance of NN-search.

However, in real applications, we can expect that the data

distribution is so skewed that we might have insigni�cant

NNs in one region but could have signi�cant ones in an-

other. This implies that we could enhance the e�ciency

of the retrieval if we distinguish signi�cant NNs from in-

signi�cant ones. Hence, we devised a way to estimate the

signi�cance of NNs based on the local intrinsic dimen-

sionality. Then, with applying it, we developed a new

NN-search algorithm: the signi�cance-sensitive nearest-

neighbor search. This algorithm not only enables us to

distinguish more signi�cant NNs from less signi�cant ones

but also enables us to cut down the search cost compared

with the conventional NN-search algorithm. The exper-

imental evaluation with a photo image database demon-

strates the advantages of the proposed algorithm.

1 Introduction

Nearest-neighbor search (NN-search) in the feature

space is widely used for the similarity retrieval of multi-

media information. Each piece of multimedia information

is mapped to a vector in a multi-dimensional space where

the distance between two vectors (typically, Euclidean

distance between the heads of vectors) corresponds to

the similarity of multimedia information. These vectors

and the space are called feature vectors and feature space

respectively. Once the feature space is obtained, the sim-

ilarity retrieval of multimedia information is reduced to

NN-search in the feature space. One of the typical ex-

amples of the feature space is the color histogram of an

image which indicates how much portion of an image has

a speci�c color (e.g., red, blue, green, etc.). One of the

important properties of the feature space is high dimen-

sionality. It is very common to use 10 or higher dimen-

sional space for the feature space. For example, colors

are often classi�ed into 16 or more colors for color his-

tograms. This generates 16 or more dimensional feature

vectors.

Recent results in the literature reveal that a curious

problem happens in high dimensional space, which is not

imagined in low dimensional space. Since high dimen-

sional space has high degree of freedom, points could be

so scattered that every distance between themmight yield

no signi�cant di�erence. A typical example appears in

the uniformly distributed points, i.e., points distributed

uniformly in a unit hypercube. For example, Berchtold et

al.[1] reported that most of the points are located near the

surface of the cube, and Katayama et al.[2] reported that

the distances among the points are very similar for any

combination of them. Recently, Beyer et al.[3] showed

that under a broad set of conditions (broader than uni-

form distribution) the distance to the nearest data point

approaches the distance to the farthest data point as di-

mensionality increases.

This problem in high dimensional space, i.e., no sig-

ni�cant di�erence in distances, is troublesome with re-

spect to the e�ciency of the similarity retrieval. Insignif-

icant nearest neighbors have less meaning to users and

also degrades the performance of NN-search since NN-

search operations are forced to examine many points hav-

ing similar distances. However, in real applications, we

can expect that the data distribution is so skewed that

we might have insigni�cant nearest neighbors in one re-

gion but could have signi�cant ones in another. This im-

plies that we could enhance the e�ciency of the retrieval

if we distinguish signi�cant nearest neighbors from in-

signi�cant ones. Hence, in our previous paper [4], we

proposed a new NN-search algorithm: the signi�cance-

sensitive nearest-neighbor search. This algorithm not

only enables us to distinguish more signi�cant nearest

neighbors from less signi�cant ones but also enables us

to cut down the search cost compared with the conven-

tional NN-search algorithm.

In this paper, we evaluate the impact of the signi�-
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Figure 1: The maximum, the average, and the min-
imum of the distances between 100,000
points generated at random in a unit hy-
percube (cited from [2]).

 Nearest
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Figure 2: In the case of 64 dimensional space of Fig-
ure 1, the distance to the nearest neighbor
is 53% or more of the distance to the far-
thest point.

cance-sensitive nearest-neighbor search with applying it

to the similarity image retrieval under practical setting.

The test database is Corel Photo Collection which is one

of the popular photo collections and contains more than

60,000 photo images. By conducting similarity retrieval

with choosing every image as a query, we evaluated the

characteristics of search results from various viewpoints.

The evaluation result clearly demonstrates the advan-

tages of the signi�cance-sensitive nearest-neighbor search

in the similarity retrieval of images.

This paper is organized as follows. Section 2 shows

how insigni�cant nearest neighbors a�ect the similarity

retrieval of multimedia information. Section 3 describes

how to estimate the signi�cance of nearest neighbors.

Section 4 describes the signi�cance-sensitive NN-search

algorithm briey. In Section 5, we apply the signi�cance-

sensitive nearest-neighbor search to the similarity re-

trieval of photo images. Section 6 contains conclusions.

2 Insigni�cant NNs in Feature Spaces

2.1 Insigni�cance of Nearest Neighbors

When we use NN-search, we expect that found neigh-

bors are much closer than the others. However, this in-

tuition is sometimes incorrect in high dimensional space.

For example, when points are uniformly distributed in a

unit hypercube, the distance between two points is al-

most the same for any combination of two points. Figure

1 shows the minimum, the average, and the maximum of

the distances among 100,000 points which are randomly

generated in a unit hypercube. As shown in the �gure,

the minimum of the distances grows drastically as the

dimensionality increases and the ratio of the minimum

to the maximum increases up to 24% in 16 dimensions,

40% in 32 dimensions, and 53% in 64 dimensions. Thus,

the distance to the nearest neighbor is only 53% of the

distance to the farthest point in 64 dimensional space

(Figure 2). In this case, we can consider the nearest

neighbor to be insigni�cant, because the di�erence be-

tween the nearest neighbor and the others is negligible,

i.e., the other points are as close to the query point as the

nearest neighbor is. From the perspective of the similar-

ity retrieval, when the nearest neighbor is insigni�cant,

the nearest neighbor has almost the same similarity with

the others and does not have signi�cant similarity to the

query point.

As Figure 1 shows, insigni�cant nearest neighbors are

more likely to occur as dimensionality increases. This

characteristics can be veri�ed with estimating the dis-

tance to k-th nearest neighbor. When N points are dis-

tributed uniformly within the hypersphere whose center

is the query point, the expected distance to k-th nearest

neighbor dkNN is obtained as follows[5]:

EfdkNNg � �(k + 1=n)

�(k)

�(N + 1)

�(N + 1 + 1=n)
r; (1)

where n is the dimensionality of the space and r is the ra-

dius of the hypersphere. Then, the ratio of the (k+1)-NN

distance to the k-NN distance is obtained as follows[5]:

Efd(k+1)NNg
EfdkNNg � 1 +

1

kn
: (2)

Thus, when points are distributed uniformly around the

query point, it is expected that the di�erence between

the k-th and (k + 1)-th nearest neighbors decreases as

the dimensionality increases. This implies that insignif-

icant nearest neighbors are more likely to occur in high

dimensional space than in low dimensional space.

2.2 Harmful Inuence of Insigni�cant NNs on

Similarity Retrieval

Insigni�cant nearest neighbors have harmful inuence

on the similarity retrieval with the following respects:

� NN-search performance is degraded.

When the nearest neighbor is insigni�cant, there ex-

ist many points that have almost the same similar-

ity with the nearest neighbor. Since these points are

very strong candidates for the nearest neighbor, NN-

search operations are forced to examine many points

before determining the true nearest neighbor. This

degrades the performance of NN-search operations.
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� Result has less meaning.

When the nearest neighbor is insigni�cant, NN-

search operations return the closest point among

many strong candidates that have almost the same

similarity with the nearest neighbor. This means

that all of the candidates are either similar or dis-

similar. Therefore, it is meaningless to choose the

nearest neighbor from plenty of similar candidates.

These e�ects are extremely harmful to the retrieval sys-

tems with human-computer interaction. When the near-

est neighbor is insigni�cant, the system forces users to

wait until meaningless nearest neighbors are returned

with very slow response. Thus, it is necessary to han-

dle insigni�cant nearest neighbors appropriately in order

to achieve e�cient similarity retrieval of multimedia in-

formation.

3 Estimation of NN's Signi�cance based

on the Local Intrinsic Dimensionality

3.1 De�nition of Insigni�cant Nearest Neighbors

As stated above, insigni�cant nearest neighbors are

more likely to occur in high dimensional space and trou-

blesome to the similarity retrieval systems. However, this

never means that high dimensional feature space is useless

to the similarity retrieval of multimedia information. In

real applications, we can expect that the data distribution

is so skewed that the intrinsic dimensionality (or e�ective

dimensionality) should be smaller than the dimensional-

ity of the feature space. For example, when the data

distribution is governed by a number of dominant dimen-

sions, the intrinsic dimensionality is given by the number

of such dominant dimensions. In addition, the intrinsic

dimensionality should not be consistent over the data set

but vary from one local region to another. Therefore, we

might have insigni�cant nearest neighbors in one region

but could have signi�cant ones in another. This implies

that we could enhance the e�ciency of the similarity re-

trieval if we can distinguish signi�cant nearest neighbors

from insigni�cant ones. With this aim, we devised a way

to estimate the signi�cance of nearest neighbors based on

the local intrinsic dimensionality.

In the �rst place, we have coined a de�nition of in-

signi�cant nearest neighbors as follows:

De�nition 1 Let dNN be the distance from the query

point to a nearest neighbor. Then, the nearest neighbor

is insigni�cant if more than or equal to Nc points exist

within the range of dNN to Rp � dNN from the query

point.

Here, Rp(> 1) and Nc(> 1) are controllable parameters

(Figure 3). Rp determines the proximity of the query

point and Nc determines the congestion of the proxim-

ity. For example, we set 1.84 to Rp and 48 to Nc at the

experiment described in Section 5. The way to �nd ap-

propriate values for Rp and Nc will be discussed in the

Nearest Neighbor

more than points

Query Point

Nc

dNN
Rp dNN

Figure 3: De�nition of insigni�cant NNs.

remainder of this section.

3.2 Optimal Parameter Setting based on the Lo-

cal Intrinsic Dimensionality

As shown above, the parameters Rp and Nc take an

essential role in the de�nition of the insigni�cant nearest

neighbors. We present here a way to �nd the optimal

parameter setting based on the local intrinsic dimension-

ality. The parameter setting presented below consists of

two steps. In the �rst step, the local intrinsic dimen-

sionality is related to the insigni�cance of nearest neigh-

bors, then two control-points, (�c; �c) and (�r; �r), are

determined in order to control what local intrinsic dimen-

sionality to be regarded as insigni�cant: �c is the cut-o�

dimensionality, �r the rejection dimensionality, �c the re-

jection probability at �c, and �r the rejection probability

at �r. Then, in the second step, the parameters Rp and

Nc are determined from these four parameters.

Firstly, we relate the insigni�cance of nearest neighbors

with the local intrinsic dimensionality by Equation (2).

It should be noted that this equation holds when the local

intrinsic dimensionality is n (in other words, n in Equa-

tion (2) does not mean the dimensionality of the data

space but means the intrinsic dimensionality)[5]. Equa-

tion (2) indicates that the ratio of d(k+1)NN to dkNN

decreases monotonically as k increases. Therefore, the

maximum of the ratio between two nearest neighbors is

expected as follows:

max
k

Efd(k+1)NNg
EfdkNNg =

Efd2NNg
Efd1NNg � 1 +

1

n
: (3)

This equation shows that the maximum expected value

of the relative di�erence between the k-th and the (k+1)-

th nearest neighbor decreases monotonically as the local

dimensionality increases (Figure 4). Only 20% or less dif-

ference is expected at the 5 dimensions, and 10% or less at

10 dimensions. Thus, the local dimensionality allows us

to estimate the relative signi�cance of nearest neighbors.

We use this property to decide control-points, (�c; �c) and

(�r; �r) as is shown below.

Secondly, we relate the local intrinsic dimensionality n

with the parameters Rp and Nc. When points are dis-

tributed uniformly in a local region with the local intrin-
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Figure 5: The rejection probability when Rp is

1.84471 and Nc is 48.0277.

sic dimensionality n, the probability that Nc points exist

in the proximity speci�ed by Rp is obtained as follows:

Pr fNc points in Rpg = (1� (1=Rp)
n)

Nc (4)

According to the proposed de�nition, a nearest neigh-

bor is insigni�cant when Nc points exist in the proximity

speci�ed by Rp. Therefore, Equation 4 corresponds to

the probability that a nearest neighbor is regarded as be-

ing insigni�cant when the local intrinsic dimensionality

is n. Hence, we call this probability the rejection proba-

bility. The rejection probability increases monotonically

as the local intrinsic dimensionality increases and can be

controlled easily by two control-points as follows. Sup-

pose that we want to set the rejection probability to �1
at the dimensionality �1, and �2 at the dimensionality �2
(0 < �1 < �2 < 1 and 1 < �1 < �2). Then, we can deter-

mine the parameters Rp and Nc by solving the following

simultaneous equations:

(1� (1=Rp)
�1)Nc = �1 (5)

(1� (1=Rp)
�2)Nc = �2 (6)

By the elimination of Nc the following equation is ob-

tained:
log(1� (1=Rp)

�1)

log(1� (1=Rp)�2)
=

log �1

log �2
(7)

This equation cannot be arithmetically solved. However,

since the left side of the equation increases monotonically

as Rp increases, it can be easily solved with numerical

methods, e.g., Newton's method. Once Rp is determined,

Nc is obtained from Rp as follows:

Nc =
log �1

log(1� (1=Rp)�1)
: (8)

Now, by Equation (7) and (8), we can determine Rp and

Nc from the two control-points (�1; �1) and (�2; �2).

We suggest to set up the two control-points as the pair

of the cut-o� point (�c; �c) and the rejection point (�r; �r)

by analogy with the low pass �lter. The range of n < �c
is the signi�cance band where the point distribution with

the local intrinsic dimensionality n should be regarded

as being signi�cant. The range of n > �r is the insignif-

icant band where the point distribution with the local

intrinsic dimensionality n should be regarded as being

insigni�cant. The range of �c < n < �r is the transition

band. We also propose to determine the value of �c and �r
from the maximum expected value of the relative di�er-

ence between the k-th and the (k+1)-th nearest neighbor

(Equation (3) and Figure 4). For example, it should be

reasonable to set the cut-o� dimensionality to 5 and the

rejection dimensionality to 10 since only 20% or less dif-

ference is expected at the 5 dimensions, and 10% or less

at 10 dimensions. When we choose 0.1 as the probabil-

ity at the cut-o� dimensionality and 0.9 as the proba-

bility at the rejection dimensionality, two control-points

are obtained as (5, 0.1) and (10, 0.9). Then, Rp and Nc

are computed from Equation (7) and (8) as 1.84471 and

48.0277 respectively. Figure 5 shows the rejection prob-

ability with these parameters computed from Equation

(4).

As shown above, the method proposed here enables us

to control the rejection probability as if we were design-

ing such a low pass �lter that �lters the local intrinsic

dimensionality (so to speak, a dimensionality �lter). Al-

though the rejection probability is estimated based on the

uniform distribution, the uniformity is assumed only in

each local region, i.e., the proximity speci�ed by Rp. Be-

cause of these merits, the method described in this section

should be an e�ective tool for estimating the signi�cance

of nearest neighbors.

4 Signi�cance-Sensitive NN-Search Al-

gorithm for Multidimensional Index

Structures

4.1 Signi�cance-Sensitive NN-Search Algorithm

In order to circumvent the harmful inuence of insignif-

icant nearest neighbors, we developed a new nearest-

neighbor search algorithm for multidimensional index

structures (e.g., SS-tree[6], VAMSplit R-tree [7], X-

tree[8], SR-tree [2], LSDh-tree[9], Hybrid tree[10], IQ-
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tive NN-search.

tree[11], etc.) with applying the signi�cance estimation

method described in the previous section. The algorithm

tests the signi�cance of a nearest-neighbor in the course of

a search operation. Then, when it �nds the nearest neigh-

bor to be insigni�cant, it quits the search and returns

the partial result as shown in Figure 6. When j-th near-

est neighbor is found to be insigni�cant during k-nearest

neighbor search, the search is terminated and candidates

on the termination are returned for j-th to k-th nearest

neighbors. Thus, the mixture of exact nearest neighbors

and nearest neighbor candidates is returned when an in-

signi�cant nearest neighbor is detected during the search

operation. We call this NN-search as the Signi�cance-

Sensitive Nearest-Neighbor Search since it is sensitive to

the signi�cance of nearest neighbors. This algorithm not

only enables us to determine the signi�cance of nearest

neighbors but also enables us to cut down the search cost

since this algorithm avoids pursuing exact answers for

insigni�cant nearest neighbors.

Due to the limitation of the space, we do not show the

details of the algorithm here. The full description and the

program code of the algorithm can be found in [4]. The

algorithm is an extension of the basic NN-search algo-

rithm proposed in [12]. The main idea of the extension is

counting the number of points that are located within the

proximity of the query point in the course of search op-

eration. The proximity is speci�ed by the parameter Rp

in terms of the distance to the nearest neighbor (dNN ) as

in De�nition 1. Therefore, the exact range of the prox-

imity is determined only after the search is completed.

However, it is possible to determine the subpart of the

proximity from the lower and the upper bound of dNN .

The lower bound of dNN (LBfdNNg) is given by the dis-
tance to the closest node that is not visited so far, while

the upper bound of dNN (UBfdNNg) is given by the dis-
tance to the current candidate of the nearest neighbor.

From LBfdNNg and UBfdNNg, the subpart of the prox-
imity can be determined as the range from UBfdNNg to
LBfdNNg�Rp. The proposed algorithm counts the num-

ber of points in this subpart of the proximity and detects

the insigni�cance of the nearest neighbor even before the

search is completed.

It should be noted that the signi�cance-sensitive NN-

search is di�erent from the approximate NN-search al-

gorithms [13, 14]. The approximate NN-search [13] ter-

minates when the ratio of the upper bound to the lower

bound of dNN is reduced to less than or equal to (1 + �).

Here � is the controllable parameter of an error bound.

At this point, the candidate is an approximate answer

whose error in the distance from the query point is less

than or equal to �. Thus � determines the precision of

an approximate answer. The PAC NN-search (proba-

bly approximately correct NN-search)[14] also �nds an

approximate answer but estimates the lower bound of

dNN from the distance distribution of the dataset under

the speci�ed probability. Thus, the PAC NN-search re-

turns an approximate answer under the given precision

and the given probability. While these algorithms focus

on the precision of an answer, the signi�cance-sensitive

NN-search algorithm focuses on the signi�cance of the

nearest neighbor. As shown in Figure 6, the proposed

algorithm returns an inexact answer only when the near-

est neighbor is determined to be insigni�cant. As long as

the nearest neighbor is signi�cant, the algorithm returns

the exact answer. As its name implies, the salient fea-

ture of the proposed algorithm is the sensitivity to the

signi�cance of the nearest neighbor.

4.2 Evaluation with Synthetic Datasets

In order to evaluate the characteristics of the signi�-

cance-sensitive NN-search, we synthesized datasets hav-

ing various intrinsic dimensionalities. A dataset having

the intrinsic dimensionality � is synthesized by generat-

ing n-dimensional points (x1; : : : ; xn) in accordance with

the following rule:

xi =

8>>>><
>>>>:

U(0; 1) (1 � i < �)

1p
n� � + 1

U(0; 1) (i = �)

x� (� < i � n);

(9)

where U(0; 1) is the uniform distribution in the range

of 0 to 1. We synthesized datasets having the intrinsic

dimensionality 1 � 20. The dimensionality of the data

space, i.e., n in Equation (9), is 20. Each dataset contains

1,000,000 points.

Experiments are conducted on a Sun Microsystems

workstation, Ultra 60 (CPU: UltraSPARC-II 360MHz,

main memory: 512Mbytes, OS: Solaris 2.6). Programs

are implemented in C++. The VAMSplit R-tree[7] is

employed as the index structure, since it has an e�cient

static construction algorithm suitable for the NN-search

in high dimensional space. We measured the average per-

formance of 1,000 random trials of �nding the �rst nearest

neighbor. Query points are selected at random from the

dataset. The parameters Rp and Nc are set to 1.84471

5



0 5 10 15 20
Intrinsic Dimensionality

1

10

100

1000

10000

C
P

U
 T

im
e 

(m
se

c)

0 5 10 15 20
Intrinsic Dimensionality

1

10

100

1000

10000

N
um

be
r 

of
 D

is
k 

R
ea

ds

Basic NN−Search
Significance−Sensitive NN−Search

0 5 10 15 20
Intrinsic Dimensionality

0

20

40

60

80

100

120

S
ig

ni
fic

an
ce

−
S

en
si

tiv
e 

/ B
as

ic
 (

%
)

0 5 10 15 20
Intrinsic Dimensionality

0

20

40

60

80

100

120

S
ig

ni
fic

an
ce

−
S

en
si

tiv
e 

/ B
as

ic
 (

%
)

Significance−Sensitive / Basic

Figure 8: Performance with the synthetic datasets.
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and 48 respectively according to the setting described in

Section 3.2.

Figure 7 and 8 shows the result of the experiment. In

both �gures, the horizontal axis indicates the intrinsic di-

mensionality of the datasets. Figure 7 shows the rejection

probability, i.e., the ratio of such a case that the near-

est neighbor is determined to be insigni�cant. The mea-

sured probability is very close to the theoretical one. This

proves the validity of the parameter setting presented in

Section 3.2. Figure 8 shows the CPU time and the num-

ber of disk reads. When the intrinsic dimensionality is

low, the di�erence between the basic NN-search and the

signi�cance-sensitive NN-search is negligible. However,

when the intrinsic dimensionality is high, both the CPU

time and the number of disk reads are reduced remark-

ably. When the intrinsic dimensionality is 20, the CPU

time is reduced by 76% and the number of disk reads is re-

duced by 81% compared with the basic NN-search. This

result demonstrates that the NN-search performance can

be improved by the signi�cance-sensitive NN-search.

5 Similarity Image Retrieval with Signif-

icance-Sensitive NN-Search

5.1 Experiment Con�guration

We evaluated the performance of the signi�cance-

sensitive NN-search with applying it to the similarity re-

trieval of images. The dataset is 60,195 images of Corel

Photo Collection contained in the product called Corel

Gallery 1,000,000. The similarity of images is measured

in terms of the color histogram. Munsell color system is

used for the color space. It is divided into nine subspaces:

black, gray, white, and six colors. For each image, his-

tograms of four sub-regions, i.e., upper-left, upper-right,

lower-left and lower-right, are calculated in order to take

account of the composition of the image. Four histograms

are concatenated to compose a 36-dimensional feature

vector. Similarity of images is measured by Euclidean

distance among these 36-dimensional vectors. We mea-

sured the performance of �nding 100 nearest neighbors

with employing every image as a query. Therefore, one

of the found nearest neighbors is the query image itself.

5.2 Cost of the Signi�cance-Sensitive NN-Search

We compared the cost of the signi�cance-sensitive NN-

search with that of the basic NN-search. As shown in

Figure 9, both the CPU time and the number of disk

reads of the signi�cance-sensitive NN-search are remark-

ably reduced compared with those of the basic NN-search.

The CPU time is reduced by 75% and the number of

disk reads is reduced by 72%. This result demonstrates

that the signi�cance-sensitivity nearest-neighbor search

enables us to cut down the search cost. Although the re-

duction rate depends on the dataset, this cost reduction

capability of the signi�cance-sensitive NN-search should

be advantageous to the interactive similarity retrieval sys-

tems that need quick response to users.
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Table 1: Number of signi�cant NNs.

# of Signi�cant NNs # of Occurrence

100 0

90 � 99 6

80 � 89 40

70 � 79 0

60 � 69 1

50 � 59 53

40 � 49 13

30 � 39 37

20 � 29 87

10 � 19 269

2 � 9 13649

1 46040

Total 60195

Table 2: Categories of search results.

Observed Category
# of Signi�cant

NNs (at most)

Texture 92

Sky / Sea 62

Portrait 35

Card 23

Firework 23

Sunset 19

Kung-Fu 18

Steamship 17

Desert 16
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Figure 9: Performance of signi�cance-sensitive nearest-

neighbor search with the real dataset.

5.3 Number of Signi�cant Nearest Neighbors in

Search Results

Table 1 shows the number of signi�cant nearest neigh-

bors found by the signi�cance-sensitive nearest-neighbor

search. Because we employed every image as a query, the

total of the occurrence is equal to the number of images

in the dataset. Table 2 shows what kind of images are

retrieved as signi�cant nearest neighbors. We examined

the search results having relatively many signi�cant near-

est neighbors and then determined what kind of images

are retrieved as signi�cant nearest neighbors. Figure 10

shows examples of search results when the number of sig-

ni�cant nearest neighbors is relatively large. Due to the

space limitation, top 5 images are shown. The numerical

value under each image is the distance from the query

to the image. We can see that similar images are suc-

cessfully retrieved by the signi�cance-sensitive nearest-

neighbor search.

The amazing result of Table 1 is that we obtained

only one signi�cant nearest neighbor for 46,040 images.

Since each query image is chosen from the images in the

dataset, the obtained signi�cant nearest neighbor is the

query itself. Therefore, we obtained no signi�cant near-

est neighbor except for the query image. In this case,

the query image is surrounded by plenty of neighbors

that have almost the same similarity to the query. Since

Corel Photo Collection collects wide variety of photos, it

is not strange that an image has no similar image in the

collection. In addition, the collection contains some tex-

ture photos. In this case, we have plenty of images with

small di�erence. Figure 11 shows examples of search re-

sults when we obtained no signi�cant nearest neighbors

except for the query image. Due to the space limitation,

top 5 images are shown. Figure 11 (a) is the case that the

query image is surrounded by plenty of dissimilar images,

while Figure 11 (b) is the case that the query image is

surrounded by plenty of images with small di�erence. It

should be noted that we do not claim that these search

results are insigni�cant or meaningless. We only claim

that the nearest neighbor is insigni�cant, i.e., the nearest

neighbor is not signi�cantly closest. The aim of the pro-

posed algorithm is to avoid pursuing exact answers for

such insigni�cant nearest neighbors.

The examples shown above illustrate that the signif-

icance-sensitive nearest-neighbor search allows us to see

how retrieved images are signi�cantly close to the query

image. This capability should be advantageous to the

interactive information retrieval systems.

5.4 Cumulative Distribution of Points around

Query Points

In order to validate the results of the signi�cance-

sensitive nearest neighbor search, we plotted cumulative

distribution of points around the query points used in the

above examples. Figure 12 shows the cumulative distri-

bution of points around the query points used in Figure

10 (a), 10 (b), and 11 (a). The number of signi�cant

nearest neighbors obtained by the search are 92, 62, and

1, respectively. The horizontal axis indicates the distance

from the query point normalized by the distance to the

1st nearest neighbor of each query point, while the ver-

tical axis indicates the cumulative frequency of points.

As the �gure shows, the distribution of nearest neighbors

di�ers distinctively from one query point to another. The

broader the distribution is, the more signi�cant nearest-
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No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.00577992 0.00586184 0.00605519 0.00632076

(a) Texture (Signi�cant NN: 92)

No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.0926871 0.0955328 0.100514 0.100819

(b) Sky / Sea (Signi�cant NN: 62)

No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.0233467 0.0294757 0.0354467 0.046508

(c) Portrait (Signi�cant NN: 35)

No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.0337379 0.0489685 0.0500458 0.0582019

(d) Card (Signi�cant NN: 23)

No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.0452955 0.0477537 0.0659462 0.0707713

(e) Firework (Signi�cant NN: 23)

No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.160174 0.164325 0.176234 0.181616

(f) Sunset (Signi�cant NN: 19)

Figure 10: Examples of search results.
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No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.0298262 0.0500842 0.0642604 0.0781353

(g) Kung-Fu (Signi�cant NN: 18)

No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.0338887 0.0465049 0.0500577 0.0518218

(h) Steamship (Signi�cant NN: 17)

No. 1
(Query)

No. 2 No. 3 No. 4 No. 5

0 0.200025 0.274365 0.282866 0.318839

(i) Desert (Signi�cant NN: 16)

Figure 10: Examples of search results (cont'd).

No. 1

(Query)
No. 2 No. 3 No. 4 No. 5

0 0.0634439 0.0717038 0.072973 0.0769924

(exact NN) (insigni�cant NN) (insigni�cant NN) (insigni�cant NN) (insigni�cant NN)

(a) No similar image is obtained.

No. 1

(Query)
No. 2 No. 3 No. 4 No. 5

0 0.00735835 0.00750153 0.00758909 0.00768191

(exact NN) (insigni�cant NN) (insigni�cant NN) (insigni�cant NN) (insigni�cant NN)

(b) Images with small di�erence are obtained.

Figure 11: Examples of search results when no signi�cant NN is found except for the query.
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Figure 12: Cumulative distribution of points around

query points.

neighbor is obtained. This tendency meets the aim of

the signi�cance sensitive NN-search, i.e., detecting the

congestion of nearest neighbors.

6 Conclusion

This paper shows that the similarity image retrieval

can be improved with the employment of a new NN-

search algorithm, the signi�cance-sensitive nearest-neigh-

bor search. Insigni�cant nearest neighbors are likely to

occur in high dimensional space. They a�ect NN-search

performance because the search operation must examine

many strong candidates to determine the true nearest

neighbor. In addition, from the perspective of the simi-

larity retrieval, it is meaningless to choose the true near-

est neighbor from plenty of candidates having almost the

same similarity.

The signi�cance-sensitive nearest-neighbor search cir-

cumvents this problem by detecting insigni�cant nearest

neighbors during the search operation. When an insignif-

icant nearest neighbor is detected, the operation is termi-

nated and a partial result is returned. This reduces both

CPU time and disk I/O, and besides enables us to dis-

tinguish more signi�cant neighbors from less signi�cant

ones. These capabilities are advantageous especially to

the interactive information retrieval systems.

In our future work, we plan to conduct more experi-

ments to clarify the characteristics of the proposed search

algorithm in further detail. For example, we plan to em-

ploy other image features and to use other image collec-

tions.
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