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Abstract

Nearest neighbor (NN) search in high dimensional fea-
ture space is widely used for similarity retrieval of multi-
media information. However, recent research results in the
database literature reveal that a curious problem happens
in high dimensional space. Since high dimensional space
has high degree of freedom, points could be so scattered
that every distance between them might yield no significant
difference. In this case, we can say that the NN is indistinc-
tive because many points exist at the similar distance. To
make matters worse, indistinctive NNs require more search
cost because search completes only after choosing the NN
from plenty of strong candidates. In order to circumvent
the harmful effect of indistinctive NNs, this paper presents
a new NN search algorithm which determines the distinc-
tiveness of the NN during search operation. This enables
us not only to cut down search cost but also to distinguish
distinctive NNs from indistinctive ones. These advantages
are especially beneficial to interactive retrieval systems.

1. Introduction

Nearest-neighbor (NN) search in the feature space is
widely used for the similarity retrieval of multimedia infor-
mation. Each piece of multimedia information is mapped
to a vector in a multi-dimensional space where the distance
between two vectors (typically, Euclidean distance between
the heads of vectors) corresponds to the similarity of multi-
media information. These vectors and the space are called
feature vectors and feature space respectively. Once the fea-
ture space is obtained, the similarity retrieval ofmultimedia
information is reduced to NN search in the feature space.
One of the important properties of the feature space is high
dimensionality. It is very common to use 10 or higher di-
mensional space for the feature space.

Recent results in the literature reveal that a curious prob-
lem happens in high dimensional space, which is not imag-
ined in low dimensional space. Since high dimensional

space has high degree of freedom, points could be so scat-
tered that every distance between them might yield no sig-
nificant difference. A typical example appears in the uni-
formly distributed points, i.e., points distributed uniformly
in a unit hypercube. For example, Berchtold et al.[1] re-
ported that most of the points are located near the surface
of the cube, and Katayama et al.[2] reported experimen-
tally that the distances among the data points are very sim-
ilar for any combination of them. Recently, Beyer et al.[3]
showed that under a broad set of conditions (broader than
uniform distribution) the distance to the nearest data point
approaches the distance to the farthest data point as dimen-
sionality increases. Thus, in high dimensional space, the
distance to the nearest neighbor may not yield significant
difference compared with the distances to the other points.
In this case, we can say that the nearest neighbor isindis-
tinctive because many points exist at the similar distance
with the nearest neighbor. To make matters worse, indis-
tinctive nearest neighbors require more search cost than dis-
tinctive ones because search completes only after choosing
the nearest neighbor from plenty of strong candidates.

Indistinctive nearest neighbors are troublesome with re-
spect to the similarity retrieval. They are less informative
to users since we do not have significant difference between
the nearest neighbor and the others. In addition, indistinc-
tive nearest neighbors degrade the system response because
they incur high search cost. As mentioned above, high di-
mensional space is more likely to have indistinctive nearest
neighbors. This means that the similarity retrieval based on
high dimensional feature space is more vulnerable to the
harmful effect of indistinctive nearest neighbors. However,
this does not mean that high dimensional feature space is
useless for the similarity retrieval of multimedia informa-
tion. Since the point distribution of the feature space is
skewed, the intrinsic dimensionality (effective dimensional-
ity) in a local region can be much less than the dimensional-
ity of the feature space. Hence, we might have indistinctive
nearest neighbors in one region but might have distinctive
ones in another. The distinctiveness of the nearest neighbor
differs from one local region to another.
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Figure 1. Distances among 100k points gen-
erated at random in a unit hypercube [2].

From the above perspective, we noticed that we should
distinguish indistinctive nearest neighbors from distinctive
ones in order to achieve efficient similarity retrieval of
multimedia information. If we detect the distinctiveness
of the nearest neighbor, we can change the behavior of
the NN search to reduce the search cost and to provide
more information for users. To this aim, we devised a
new NN search algorithm: distinctiveness-sensitive nearest-
neighbor search. This algorithm determines the distinctive-
ness of the nearest neighbor based on the intrinsic dimen-
sionality during search operation. If the nearest neighbor is
determined to be indistinctive, the search quits and returns
a partial result. This enables us not only to cut down search
cost but also to notify users whether the nearest neighbor is
distinctive or not. These advantages are especially benefi-
cial to the interactive retrieval system which requires quick
response as well as informative results.

The contribution of this paper is threefold:

(1) The notion of distinctiveness is introduced to nearest
neighbors.

Through theoretical and experimental evaluation, we
demonstrate how important it is to distinguish indis-
tinctive nearest neighbors from distinctive ones.

(2) A way of detecting the distinctiveness of the nearest
neighbor is presented.

We devised a probabilistic method which determines
the distinctiveness of the nearest neighbor.

(3) A new type of NN search method, i.e., distinctiveness-
sensitive nearest-neighbor search, is presented.

We devised a new NN search method which detects the
distinctiveness of nearest neighbors during search op-
eration. The benefit of the proposed method is demon-
strated through experimental evaluation.

This paper is organized as follows. Section 2 shows how
indistinctive nearest neighbors affect the similarity retrieval
of multimedia information. Section 3 describes how to es-
timate the distinctiveness of nearest neighbors. Section 4
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Figure 2. Case of 64 dimensions of Figure 1.

presents the distinctiveness-sensitive NN search algorithm.
The results of experiments are shown in Section 5. Section
6 contains conclusions.

2. Distinctiveness of NNs in feature space

2.1. Distinctiveness of NNs in uniform distribution

When we use NN search, we expect that found neigh-
bors are much closer than the others. However, this intu-
ition is sometimes incorrect in high dimensional space. For
example, when points are uniformly distributed in a unit
hypercube, the distance between two points is almost the
same for any combination of two points. Figure 1 shows
the minimum, the average, and the maximum of the dis-
tances among 100,000 points generated at random in a unit
hypercube. As shown in the figure, the minimum of the dis-
tances grows drastically as the dimensionality increases and
the ratio of the minimum to the maximum increases up to
24% in 16 dimensions, 40% in 32 dimensions, and 53% in
64 dimensions. Thus, the distance to the nearest neighbor
is 53% or more of the distance to the farthest point in 64
dimensional space (Figure 2). In this case, we can consider
the nearest neighbor to beindistinctive, because the differ-
ence between the nearest neighbor and the others is negli-
gible, i.e., the other points are as close to the query point
as the nearest neighbor is. From the perspective of the sim-
ilarity retrieval,when the nearest neighbor is indistinctive,
the nearest neighbor has almost the same similarity with the
others and does not have distinctive similarity to the query.

As Figure 1 shows, indistinctive nearest neighbors are
more likely to occur as dimensionality increases. This char-
acteristics can be verified by estimating the distance tok-th
nearest neighbor. WhenN points are distributed uniformly
within the hypersphere whose center is the query point, the
expected distance tok-th nearest neighbordkNN is obtained
as follows[4]:

EfdkNNg � �(k + 1=n)

�(k)

�(N + 1)

�(N + 1 + 1=n)
r; (1)

wheren is the dimensionality of the space andr is the ra-
dius of the hypersphere. Then, the ratio of the(k + 1)-NN
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Figure 3. Relative difference between the first
and the second nearest neighbor.

distance to thek-NN distance is obtained as follows[4]:

Efd(k+1)NNg
EfdkNNg � 1 +

1

kn
: (2)

Thus, when points are distributed uniformly around the
query point, it is expected that the difference between the
k-th and(k + 1)-th nearest neighbors decreases as the di-
mensionality increases. This implies that indistinctive near-
est neighbors are more likely to occur in high dimensional
space than in low dimensional space.

Equation (2) also indicates that the ratio ofd(k+1)NN to
dkNN decreases monotonically ask increases. Therefore,
the maximum of the ratio between two nearest neighbors is
obtained for the first and the second nearest neighbor. From
Equation (2), the expected ratio ofd2NN to d1NN is ap-
proximated as follows:

max
k

Efd(k+1)NNg
EfdkNNg =

Efd2NNg
Efd1NNg � 1 +

1

n
: (3)

By subtracting one from both sides, we can estimate the
relative difference between the first and the second nearest
neighbor when the dimensionality isn:

Efd2NNg �Efd1NNg
Efd1NNg � 1

n
: (4)

This equation shows that the relative difference between the
first and the second nearest neighbor decreases monotoni-
cally as the dimensionality increases (Figure 3). Only 20%
difference is expected at 5 dimensions, and only 10% at 10
dimensions. This equation clearly shows that we could not
expect strong distinctiveness of nearest neighbors for high
dimensional uniform distribution.

2.2. Intrinsic dimensionality of feature space

As shown above, indistinctive nearest neighbors are
more likely to appear in high dimensional space, and the ex-
pected relative difference between the first and the second
nearest neighbor is inversely proportional to the dimension-
ality of the distribution. However, this does not mean that

high dimensional feature space is useless. We should note
that the discussion above is based on the uniform distribu-
tion. If the data distribution over the entire feature space is
uniform, we can say that the feature space is useless, but in
real applications, the data distribution is not uniform at all.

Instead of assuming the uniform distribution to the en-
tire space, we should employ the intrinsic dimensionality
(or effective dimensionality) which is determined by a lo-
cal characteristics of the data distribution[4]. For example,
when the data distribution is governed by a number of dom-
inant dimensions, the intrinsic dimensionality is given by
the number of such dominant dimensions. In addition, the
intrinsic dimensionality may not be consistent over the data
set but vary from one local region to another .

In real applications, we can expect that the data distribu-
tion is so skewed that the intrinsic dimensionality could be
much smaller than the dimensionality of the feature space.
Therefore, we might have indistinctive nearest neighbors in
one region but could have distinctive ones in another. In
a region with low intrinsic dimensionality, we can expect
distinctive nearest neighbors, while we cannot expect dis-
tinctive ones in a region with high intrinsic dimensionality.
Thus, the intrinsic dimensionality is the important clue for
estimating the distinctiveness of the nearest neighbor. In
Section 3, we present a probabilistic method which deter-
mines the distinctiveness of the nearest neighbor based on
intrinsic dimensionality.

2.3. Harmful effect of indistinctive NNs

Indistinctive nearest neighbors have harmful effect on
the similarity retrievalwith the following respects:

� NN search performance is degraded.

When the nearest neighbor is indistinctive, there ex-
ist many points that have almost the same similarity
with the nearest neighbor. Since these points are very
strong candidates for the nearest neighbor, NN search
operation is forced to examine many points before de-
termining the true nearest neighbor. This degrades the
performance of NN search operation.

� Less informative result is returned.

When the nearest neighbor is indistinctive, NN search
operation returns the closest point among many strong
candidates that have almost the same similarity with
the nearest neighbor. This means that all of the candi-
dates have slight difference with each other. It is not
informative for users to choose the nearest neighbor
from plenty of similar candidates.

These effects are extremely harmful to the retrieval systems
with human-computer interaction. When the nearest neigh-
bor is indistinctive, the system forces users to wait until less
informative result is answered with slow response. Thus,
it is necessary to handle indistinctive nearest neighbors ap-
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Figure 5. Rejection probability (Rp = 1:84471
and Nc = 48).

propriately in order to achieve efficient similarity retrieval
of multimedia information.

3. Estimating the distinctiveness of NNs based
on intrinsic dimensionality

3.1. Determination of indistinctive NNs

As mentioned above, the intrinsic dimensionality plays
an important role in determining the distinctiveness of the
nearest neighbor. Therefore, we devised a probabilistic
method which determines the distinctiveness of the nearest
neighbor based on the intrinsic dimensionality.

In the first place, we coined a definition of indistinctive
nearest neighbors as follows:

Definition 1 Let dNN be the distance from the query point
to a nearest neighbor. Then, the nearest neighbor is indis-
tinctive if more than or equal to Nc points exist within the
range of dNN to Rp � dNN from the query point.

Here,Rp(> 1) andNc(> 1) are controllable parameters
(Figure 4).Rp determines the proximity of the query point
andNc determines the congestion of the proximity. For
example, we set 1.84 toRp and 48 toNc at the experiment
described in Section 5.

As dimensionality increases, we are more likely to have
plenty of points in the similar distance with the nearest
neighbor. This causes congestion in the proximity of the
query point. The above definition determines indistinctive
nearest neighbors by detecting the congestion in the prox-
imity. This characteristic can be clearly stated by estimat-
ing the probability of congestion. We call this probability
the rejection probability. When points are distributed uni-
formly in a local region with the intrinsic dimensionalityn,
the probability thatNc points exist in the proximity speci-
fied byRp is obtained as follows:

Pr fNc or more points inRpg = (1� (1=Rp)
n)

Nc : (5)

According to the definition above, the nearest neighbor is
indistinctive whenNc points exist in the proximity specified
byRp. Therefore, Equation (5) corresponds to the probabil-
ity that the nearest neighbor is regarded as being indistinc-
tive when the intrinsic dimensionality isn. This probability

increases monotonically as the intrinsic dimensionality in-
creases. Equation (5) clearly shows that the congestion is
more likely to occur when the intrinsic dimensionality is
high. Figure 5 shows the rejection probability whenRp is
1.84471 andNc is 48.

3.2. Finding appropriate setting of the parameters
Rp andNc

The parametersRp andNc play an essential role in the
definition of the indistinctive nearest neighbor. We present
here a way to find the appropriate setting ofRp andNc.
As Equation (5) shows, the rejection probability is the func-
tion of the intrinsic dimensionalityn, and the form of the
function is controlled by the parametersRp andNc. The
parameter setting presented below consists of two steps. In
the first step, we choose what intrinsic dimensionality to be
regarded as having indistinctive nearest neighbors. In the
second step, we locate two control points in order to control
the form of the function, i.e., the cut-off point(�c; �c) and
the rejection point(�r; �r). Then, the parametersRp and
Nc are determined from these four parameters.

In the first step, we choose what intrinsic dimensionality
to be regarded as having indistinctive nearest neighbors. We
call this dimensionality therejection dimensionality. We
can choose it basing on the expected relative difference de-
scribed in Section 2.1. As shown in Equation (4) and Figure
3, the expected relative difference between the first and the
second nearest neighbor is inversely proportional to the in-
trinsic dimensionality. Only 20% difference is expected at
5 dimensions, and only 10% at 10 dimensions. Basing on
this expected relative difference, we can choose the rejec-
tion dimensionality. For example, if we don’t care 20% dif-
ference, we choose 5 for the rejection dimensionality; if we
don’t care 10% difference, we choose 10 for the rejection
dimensionality.

In the second step, we locate two control points in order
to control the form of the function. Since we have cho-
sen the rejection dimensionality in the first step, the ideal
form of the function is the step function whose value is zero
for the dimensionality less than the rejection dimensional-
ity and one for the dimensionality greater than or equal to
the rejection dimensionality. However, the composition of
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�c Rp Nc

1 1.31861 1.62113
2 1.41441 3.32326
3 1.51957 6.86386
4 1.65332 16.0256
5 1.84471 48.0277
6 2.15959 232.432
7 2.79551 3070.99
8 4.67486 525245
9 21.8437 2:60715 � 10
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different �c (�r = 10, �c = 0:1, and �r = 0:9).

this form is infeasible since it is a discontinuous function.
Therefore, we must choose a practical form. We locate two
control points by analogy with the low pass filter: the cut-
off point (�c; �c) and the rejection point(�r; �r) (Figure
6). Here,�r is the rejection dimensionality chosen in the
first step and�r is the rejection probability at�r, while �c
is the cut-off dimensionality and�c is the rejection prob-
ability at �c (0 < �c < �r < 1 and 0 < �c < �r).
The range ofn < �c corresponds to the pass band where
the intrinsic dimensionalityn is regarded as having distinc-
tive nearest neighbors. The range ofn > �r corresponds
to the stop band where the intrinsic dimensionalityn is re-
garded as having indistinctive nearest neighbors. The range
of �c < n < �r corresponds to the transition band. Once
we locate two control points, we can determine the parame-
tersRp andNc by solving the following simultaneous equa-
tions:

(1� (1=Rp)
�c)Nc = �c (6)

(1� (1=Rp)
�r )Nc = �r : (7)

By the elimination ofNc the following equation is obtained:

log(1� (1=Rp)
�c)

log(1� (1=Rp)�r )
=

log �c

log �r
: (8)

This equation cannot be arithmetically solved. However,
since the left side of the equation increases monotonically as
Rp increases, it can be easily solved with numerical meth-
ods, e.g., Newton’s method. OnceRp is determined,Nc is
obtained fromRp as follows:

Nc =
log �c

log(1� (1=Rp)�c)
: (9)

Now, by Equation (8) and (9), we can determineRp andNc

from the two control points(�c; �c) and(�r; �r).
As shown above, we can determine the parametersRp

andNc by locating two control points. The remaining ques-
tion is where the control points should be located. The an-
swer is that it is a trade-off between the sensitivity and the

locality. By putting the cut-off dimensionality�c near to the
rejection dimensionality�r, we can have steep slope in the
transition band (i.e.,�c < n < �r). However, this causes
the increase inRp and widens the region to be examined for
determining the distinctiveness of the nearest neighbor. As
shown in the following example,Rp increases significantly
as�c approaches�r. WhenRp is too large, we cannot ex-
ploit a local characteristics of the data distribution. Ideally,
we should have both high sensitivity and high locality. But
we need to find a compromise between the sensitivity and
the locality as shown in the following example.

3.3. Sample setting of the parameters Rp andNc

Here, we show an example of the parameter setting ac-
cording to the procedure described above. In the first step,
we choose the rejection dimensionality based on the ex-
pected relative difference between the first and the second
nearest neighbor. We choose 10 for the rejection dimension-
ality since only 10% difference is expected. In the second
step, we locate two control points with making a compro-
mise between the sensitivity and the locality. Firstly, we
need to choose the rejection probability at the cut-off and
the rejection dimensionality, i.e.,�c and �r respectively.
Here, we use 0.1 for�c and 0.9 for�r. Secondly, we need
to choose the cut-off dimensionality�c. Figure 7 shows the
parameters and the rejection probability obtained for differ-
ent �c. As shown in Figure 7 (b), we have high sensitiv-
ity when�c is close to�r. However, as shown in Figure 7
(a), the parametersRp andNc increase significantly as�c
approaches�r. Therefore, we need to find a compromise
between the sensitivity and the locality. When�c is 7,Rp

is 2.79551 andNc is 3070.99. This means that the conges-
tion is detected only when 3071 or more points exist in the
proximity of the query point. Apparently, 3071 is too large;
the locality of the proximity specified byRp is very low.
When�c is 5, the selectivity is still high andNc andRp

are quite small. Therefore, we choose 5 for�c. Finally, the
two control points are located at (5, 0.1) and (10, 0.9) and
Rp andNc are obtained as 1.84471 and 48. Figure 5 shows
the rejection probability with the setting described here. In
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Section 5, this parameter setting is used for the experimen-
tal evaluation.

4. Distinctiveness-sensitive NN search for mul-
tidimensional index structures

In order to circumvent the harmful effect of indistinc-
tive nearest neighbors, we developed a new NN search al-
gorithm for multidimensional index structures with apply-
ing the distinctiveness estimation method described in the
previous section. The algorithm tests the distinctiveness
of the nearest neighbor in the course of search operation.
Then, when it finds the nearest neighbor to be indistinc-
tive, it quits the search and returns a partial result. We
call this NN search as the Distinctiveness-Sensitive Nearest-
Neighbor Search since it is sensitive to the distinctiveness
of the nearest neighbor. This algorithm not only enables us
to determine the distinctiveness of the nearest neighbor but
also enables us to cut down the search cost as shown in the
following section.

4.1. NN search algorithms for multidimensional in-
dex structures

The distinctiveness-sensitive NN search algorithm is de-
signed for multidimensional index structures that splits
the data space into the nested hierarchy of regions, e.g.,
the SS-tree[5], the VAMSplit R-tree[6], the X-tree[7], the
SR-tree[2], the LSDh-tree[8], the Hybrid tree[9], the IQ-
tree[10], etc. Figure 8 illustrates the hierarchical structure
of the R-tree. Each node of the tree structure corresponds
to a region of the data space. Non-internal nodes store data
points, while internal nodes store the information on child
nodes, i.e., region specifications (e.g., location, size, shape,
etc.) and pointers to child nodes. The hierarchical structure
permits NN search operation to be completed with examin-
ing only some part of the feature space. This reduces CPU
time and disk I/O of NN search operation. Therefore, these
index structures are widely used for the acceleration of the
similarity retrieval of multimedia information.

We designed the new algorithm with extending the NN
search algorithm presented by Hjaltason et al.[11] (This al-
gorithm will be called the basic NN search algorithm here-
after in order to be distinguished from the distinctiveness-
sensitive NN search algorithm). The basic NN search al-

Region 2
Region 3

Region 1

Query Point

Current Candidate

Upper Bound of
Nearest Neighbor

Forthcoming Candidates
Lower Bound of 

Figure 9. NN search with multidimensional in-
dex structure.

gorithm finds the nearest neighbor of a given query point
as follows. The search starts from the root node of the in-
dex structure. At every internal node, the distances from the
query point to the child nodes are computed and the child
nodes are enqueued into a priority queue in ascending order
of the distance. Then, one node is dequeued from the pri-
ority queue and the search proceeds to the dequeued node.
Thus, nodes are visited in ascending order of the distance
from the query point. For example, in Figure 9, regions will
be searched in the order of Region 1, Region 2, and Region
3. On the other hand, every time a non-internal node is vis-
ited, the distances from the query point to the data points in
the node are computed. If it is the first visit of a non-internal
node, the closest point in the node is chosen for the candi-
date of the nearest neighbor; otherwise, the closest point
in the node is compared with the latest candidate and the
closer one is chosen for the new candidate. The distance
to the candidate gives the upper bound of the distance to
the nearest neighbor, because the nearest neighbor cannot
be farther from the query point than the candidate is. On
the other hand, the distance to the first node in the priority
queue gives the lower bound of the distance to forthcom-
ing candidates, because the first node of the priority queue
is the closest among such nodes that are not visited so far.
For example, Figure 9 illustrates the case where Region 1
is visited and the closest point in Region 1 is chosen for the
candidate. Region 2 and Region 3 are still in the priority
queue. The candidate gives the upper bound of the distance
to the nearest neighbor, while the distance to the first node
of the priority queue, i.e., the distance to Region 2, gives
the lower bound of the distance to forthcoming candidates.
The search continues until the lower bound of the distance
to forthcoming candidates exceeds the upper bound of the
distance to the nearest neighbor, i.e., until no node in the
priority queue is closer to the query point than the candidate
is. Finally, the nearest neighbor is obtained as the final can-
didate. Although the description above is the search finding
the first nearest neighbor, it can be easily extended to the
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k-nearest-neighbor search, i.e., finding k nearest neighbors.

4.2. Distinctiveness-sensitive NN search algorithm

The distinctiveness-sensitive NN search algorithm is
an extension of the basic NN search algorithm described
above. The main idea of the extension is counting the num-
ber of points that are located within the proximity of the
query point in the course of search operation. The prox-
imity is specified by the parameter Rp as in Definition 1.
If the congestion of the proximity is detected, the search
is terminated and a partial result is returned. The conges-
tion is determined by the parameter Nc as in Definition 1,
i.e., the case where the number of points in the proxim-
ity exceeds Nc is regarded as the congestion. In order to
count points in the proximity, the algorithm takes advan-
tage of the lower bound and the upper bound of the dis-
tance to the nearest neighbor dNN . As stated in the de-
scription of the basic NN search, the distance to the first
node in the priority queue and the distance to the candi-
date of the nearest neighbor gives the lower and the up-
per bound of dNN (Figure 9). These bounds also give
the bounds of the proximity. According to the definition
of the proximity in Definition 1, the range of the proxim-
ity is Rp � dNN . When the lower and the upper bound of
dNN is LBfdNNg and UBfdNNg respectively, the lower
bound and the upper bound of the range of the proximity
can be obtained as Rp �LBfdNNg and Rp � UBfdNNg.
Since dNN is obtained only at the end of the search, the
algorithm uses UBfdNNg and Rp � LBfdNNg to count
points in the proximity. Because dNN � UBfdNNg and
Rp�LBfdNNg � Rp� dNN , the number of points in the
proximity is more than or equal to the number of points that
are located in the range of UBfdNNg to Rp � LBfdNNg.
Therefore, the congestion can be detected during the search
operation by testing whether the number of points located
in the range of UBfdNNg to Rp � LBfdNNg is greater
than or equal to Nc.

With employing this congestion detection method, the

distinctiveness-sensitive NN search algorithm tests the dis-
tinctiveness of the nearest neighbor in the course of search
operation. Then, when it finds the nearest neighbor to be in-
distinctive, it quits the search and returns the partial result as
shown in Figure 10. When j-th nearest neighbor is found to
be indistinctive during k-nearest neighbor search, the search
is terminated and candidates on the termination are returned
for j-th to k-th nearest neighbors. Thus, the mixture of the
exact nearest neighbors and the nearest neighbor candidates
is returned when the indistinctive nearest neighbor is found
during the search operation. This algorithm not only en-
ables us to determine the distinctiveness of nearest neigh-
bors but also enables us to cut down the search cost since
this algorithm avoids pursuing exact answers for indistinc-
tive nearest neighbors.

It should be noted that the distinctiveness-sensitive NN
search is different from the approximate NN-search algo-
rithms [12, 13]. The approximate NN search [12] termi-
nates when the ratio of the upper bound to the lower bound
of dNN is reduced to less than or equal to (1 + �). Here
� is the controllable parameter of an error bound. At this
point, the candidate is an approximate answer whose error
in the distance from the query point is less than or equal to �.
Thus � determines the precision of an approximate answer.
The PAC NN search (probably approximately correct NN
search)[13] also finds an approximate answer but estimates
the lower bound of dNN from the distance distribution of
the dataset under the specified probability. Thus, the PAC
NN search returns an approximate answer under the given
precision and the given probability. While these algorithms
focus on the precision of an answer, the distinctiveness-
sensitive NN search algorithm focuses on the distinctive-
ness of the nearest neighbor. As shown in Figure 10, the
proposed algorithm returns an inexact answer only when the
nearest neighbor is determined to be indistinctive. As long
as the nearest neighbor is distinctive, the algorithm returns
the exact answer. As its name implies, the salient feature of
the proposed algorithm is the sensitivity to the distinctive-
ness of the nearest neighbor.

5. Experimental evaluation

5.1. Evaluation with synthetic datasets

In order to evaluate the characteristics of the distinc-
tiveness-sensitive NN search, we synthesized datasets hav-
ing various intrinsic dimensionality. A dataset having the
intrinsic dimensionality � is synthesized by generating n-
dimensional points (x1; : : : ; xn) in accordance with the fol-
lowing rule:

xi =

8
>>>><
>>>>:

U(0; 1) (1 � i < �)

1p
n� � + 1

U(0; 1) (i = �)

x� (� < i � n);

(10)
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Figure 12. Performance with the synthetic datasets.

where U(0; 1) is the uniform distribution in the range of 0
to 1. We synthesized datasets having the intrinsic dimen-
sionality 1 � 20. The dimensionality of the data space, i.e.,
n in Equation (10), is 20. Each dataset contains 1,000,000
points.

Experiments are conducted on Sun Microsystems Ul-
tra 60 (CPU: UltraSPARC-II 360MHz, main memory: 512
Mbytes, OS: Solaris 2.6). Programs are implemented in
C++. The VAMSplit R-tree[6] is employed as the index
structure, since it has an efficient static construction algo-
rithm suitable for the NN search in high dimensional space.
We measured the average performance of 1,000 random tri-
als of finding the first nearest neighbor. Query points are
selected at random from the data set. The parameters Rp

and Nc are set to 1.84471 and 48 respectively according to
the setting described in Section 3.3.

Figure 11 and 12 shows the result of the experiment. In
both figures, the horizontal axis indicates the intrinsic di-
mensionality of the datasets. Figure 11 shows the rejec-
tion probability, i.e., the ratio of such a case that the nearest
neighbor is determined to be indistinctive. The measured
probability is very close to the theoretical one. This proves
the validity of the parameter setting presented in Section
3.3. Figure 12 shows the CPU time and the number of disk
reads. When the intrinsic dimensionality is low, the differ-
ence between the basic NN search and the distinctiveness-
sensitive NN search is negligible. However, when the in-
trinsic dimensionality is high, both the CPU time and the
number of disk reads are reduced remarkably. When the
intrinsic dimensionality is 20, the CPU time is reduced by
76% and the number of disk reads is reduced by 81% com-
pared with the basic NN search. This result demonstrates
that the NN search performance can be improved by the
distinctiveness-sensitive NN search.

5.2. Evaluation with real dataset

We evaluated the performance of the distinctiveness-
sensitive NN search with applying it to the similarity re-
trieval of images. The data set is 60,195 images of Corel
Photo Collection contained in the product called Corel
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Figure 13. Performance with the real dataset.

Gallery 1,000,000. The similarity of images is measured
in terms of the color histogram. Munsell color system is
used for the color space. It is divided into nine subspaces:
black, gray, white, and six colors. For each image, his-
tograms of four sub-regions, i.e., upper-left, upper-right,
lower-left and lower-right, are calculated in order to take
account of the composition of the image. Four histograms
are concatenated to compose a 36-dimensional feature vec-
tor. Similarity of images is measured by Euclidean distance
among these 36-dimensional vectors. We measured the per-
formance of finding 100 nearest neighbors with employing
every image as a query. Therefore, one of the found near-
est neighbors is the query image itself. The platform is
the same with the experiment of synthetic datasets and the
VAMSplit R-tree[6] is employed as the index structure.

We compared the cost of the distinctiveness-sensitive
NN search with that of the basic NN search. As shown
in Figure 13, both the CPU time and the number of disk
reads of the distinctiveness-sensitive NN search are remark-
ably reduced compared with those of the basic NN search.
The CPU time is reduced by 75% and the number of disk
reads is reduced by 72%. This result demonstrates that the
distinctiveness-sensitivity NN search enables us to cut down
the search cost. Although the reduction rate depends on the
data set, this cost reduction capability of the distinctiveness-
sensitive NN search should be advantageous to the interac-
tive similarity retrieval systems that need quick response to
users.

Table 1 shows the number of distinctive nearest neigh-
bors found by the distinctiveness-sensitive NN search. Be-
cause we employed every image as a query, the total of the



Table 1. Number of distinctive NNs.

# of Distinctive NNs # of Occurrence
100 0

80 � 99 46
60 � 79 1
40 � 59 66
20 � 39 124
10 � 19 269

2 � 9 13649
1 46040

Total 60195

Table 2. Categories of search results.

Category (Observed by Hand) # of Distinctive NNs (at most)
Texture 92

Sky / Sea 62
Portrait 35

Card 23
Firework 23
Sunset 19

Kung-Fu 18
Steamship 17

Desert 16

No. 1 (Query) No. 2 No. 3 No. 4

0 0.00577992 0.00586184 0.00605519

(a) Texture (Distinctive NN: 92)

No. 1 (Query) No. 2 No. 3 No. 4

0 0.0926871 0.0955328 0.100514

(b) Sky / Sea (Distinctive NN: 62)

No. 1 (Query) No. 2 No. 3 No. 4

0 0.0233467 0.0294757 0.0354467

(c) Portrait (Distinctive NN: 35)

No. 1 (Query) No. 2 No. 3 No. 4

0 0.0337379 0.0489685 0.0500458

(d) Card (Distinctive NN: 23)

Figure 14. Examples of search results.

occurrence is equal to the number of images in the data set.
Table 2 shows what kind of images are retrieved as distinc-
tive nearest neighbors. We examined such search results
that have relatively many distinctive nearest neighbors and
then determined by hand what kind of images are retrieved
as distinctive nearest neighbors. Figure 14 shows exam-
ples of search results when the number of distinctive near-
est neighbors is relatively large. Due to the limitation of
space, top 4 images are shown. The numerical value under
each image is the distance from the query to the image. We
can see that similar images are successfully retrieved by the
distinctiveness-sensitive NN search.

The amazing result of Table 1 is that we obtained only
one distinctive nearest neighbor for 46,040 images. Since
each query image is chosen from the images in the data

set, the obtained distinctive nearest neighbor is the query it-
self. Therefore, we obtained no distinctive nearest neighbor
except for the query image. In this case, the query image
is surrounded by plenty of neighbors that have almost the
same similarity to the query. Since Corel Photo Collection
collects wide variety of photos, it is not strange that an im-
age has no similar one in the collection. In addition, the col-
lection contains some texture photos. In this case, we have
plenty of images with small difference. Figure 15 shows
examples of search results when we obtained no distinctive
nearest neighbors except for the query image. Due to the
space limitation, top 4 images are shown. Figure 15 (a) is
the case that the query image is surrounded by plenty of dis-
similar images, while Figure 15 (b) is the case that the query
image is surrounded by plenty of images with small dif-
ference. These examples illustrate that the distinctiveness-
sensitive NN search allows us to see how retrieved images
are significantly close to the query image. This capability
should be advantageous to the interactive information re-
trieval systems.

In order to validate the results of the distinctiveness-
sensitive nearest neighbor search, we plotted cumulative
distribution of points around the query points used in the
above examples. Figure 16 shows the cumulative distribu-
tion of points around such query points that are used in Fig-
ure 14 (a), 14 (b), and 15 (a). The number of distinctive
nearest neighbors obtained by the search are 92, 62, and
1, respectively. The horizontal axis indicates the distance
from the query point normalized by the distance to the 1st
nearest neighbor of each query point, while the vertical axis
indicates the cumulative frequency of points. As the figure
shows, the distribution of nearest neighbors differs distinc-
tively from one query point to another. The broader the
distribution is, the more distinctive nearest neighbor is ob-
tained. This tendency meets the aim of the distinctiveness
sensitive NN search, i.e., detecting the congestion of nearest
neighbors.

6. Conclusion

This paper shows that the similarity retrieval of multi-
media information can be improved with the employment



No. 1 (Query) No. 2 No. 3 No. 4

0 0.0634439 0.0717038 0.072973
(exact NN) (indistinctive NN) (indistinctive NN) (indistinctive NN)

(a) No similar image is obtained.

No. 1 (Query) No. 2 No. 3 No. 4

0 0.00735835 0.00750153 0.00758909
(exact NN) (indistinctive NN) (indistinctive NN) (indistinctive NN)

(b) Images with small difference are obtained.

Figure 15. Examples of results when no distinctive
NN is found except for the query.
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Figure 16. Cumulative distribution of
points around query points.

of a new NN search algorithm, the distinctiveness-sensitive
nearest-neighbor search. Indistinctive nearest neighbors are
likely to occur in high dimensional space. They affect NN
search performance because the search operation must ex-
amine many strong candidates to determine the true nearest
neighbor. In addition, from the perspective of the similar-
ity retrieval, it is less informative to choose the true nearest
neighbor from plenty of strong candidates having almost the
same similarity.

The distinctiveness-sensitive NN search circumvents this
problem by detecting indistinctive nearest neighbors during
the search operation. When an indistinctive nearest neigh-
bor is detected, the operation is terminated and a partial re-
sult is returned. This reduces both CPU time and disk I/O,
and besides enables us to distinguish the distinctive nearest
neighbors from the indistinctive ones. These capabilities
are especially advantageous to the interactive information
retrieval systems since users not only enjoy quick response
but also understand how distinctive the nearest neighbor is.
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