
A Universal Query Interface for

Heterogeneous Distributed Digital Libraries

Norio Katayama, Masanori Sugimoto, and Jun Adachi
NACSIS (National Center for Science Information Systems)

Abstract

Today, various kinds of digital libraries are accessible
on the WWW (World Wide Web). The interoperability
among those systems is one of the major topics of the
digital library community. This paper presents a Hy-
NeSS model and its query interface for that purpose.
The HyNeSS model integrates the entity relationship
model and the predicate logic, and provides a universal
and formal expression for network-oriented data. We
have developed a prototype system of the HyNeSS data-
base system. The query interface is universal in the
sense that it does not depend to any particular data-
base schema. It loads the schema information from a
remote HyNeSS database system and adapts itself to the
given schema. On the submission of a query, the com-
posed expression is converted into a declarative query
expression based on the predicate logic. It provides a
universal expression to retrieve and identify objects in
heterogeneous distributed environment.

1 Introduction

This paper presents a data model, HyNeSS, and its
universal query interface for heterogeneous distributed
digital libraries. It is universal in the sense that it
provides a general expression for queries and does not
depend on a particular database schema. The major
property of our approach is an integration of the entity
relationship model and the predicate logic. The query
interface employs an expression based on the entity
relationship model. The composed query expression
takes the form of the entity relationship model. Then,
it is converted into an expression based on the predi-
cate logic on submission and the logic-based expression
is exchanged between a client and a server. For the
sake of the declarative semantics of the predicate logic
expression, this method achieves the e�ective scheme
to retrieve and identify objects in heterogeneous dis-
tributed digital libraries.

This paper is organized as follows. Section 2 de-
scribes the background of this study and Section 3 pro-
vides the system overview of the developed prototype
system. Section 4 and 5 presents the HyNeSS model
and its query interface. Section 6 discusses the prop-

erties of our approach and conclusion is contained in
Section 7.

2 Background

Recently, experimental and operational digital libraries
are accessible on the WWW (World Wide Web). For
example, the digital libraries developed by Cornell Uni-
versity[6] and University of Michigan[2] are open to
the public. In addition, index servers for WWW re-
sources are provided by Yahoo, WWW Worm, Lycos,
etc. Now, various and numerous digital repositories are
available on the WWW.

To use these digital repositories seamlessly, the in-
teroperability of digital libraries is one of the major
topics of the digital library community. In the tra-
ditional sense, it is the problem of the integration of
heterogeneous distributed databases, which is already
discussed in the database literatures[7]. The key is how
to create a federated schema and a common user in-
terface. Although that problem has been discussed in
terms of the conventional database systems, e.g., hier-
archical, network, and relational database systems, the
conventional approach is not directly applicable to dig-
ital libraries for the sake of the mismatch in data orga-
nization. Data stored in digital libraries have the form
of hypermedia and hypertexts, i.e., rather network-
oriented than record-oriented. Therefore, a new data
model and a query interface are required which is suit-
able for network-oriented data.

There are three levels of the interoperability: not-
coupled, loosely-coupled, and tightly-coupled. These
levels can be distinguished in terms of a database sche-
ma and a query interface as shown in Figure 1. Not-
coupled databases use di�erent schemata and di�erence
query interfaces. Users need to know every schema and
every query interface to use them. Loosely-coupled
databases share their query interface. Users can use
the common syntax to express queries. Tightly-coupled
databases share their database schema as well as their
query interface. The shared schema may be a feder-
ated one, i.e., it may be a union of schemata of compo-
nent databases. Users need not know the existence of
component databases and can use it as if it is a single
centralized database.

Database schema Query interface
Tightly-coupled shared (federated) shared
Loosely-coupled not shared shared
Not-coupled not shared not shared

Figure 1: The three levels of the interoperability

In the following sections, we present a data model
HyNeSS and its query interface for the basis of a feder-
ated database schema and a universal query interface
for heterogeneous distributed digital libraries.

3 System overview

Figure 2 illustrates the outline of our prototype sys-
tem. The server has four components. The database is
managed by a database management system HyNeSS
(Hyper-Network Storage System) [5]. The httpd stores
the schema information of the database and CGI (com-
mon gateway interface) programs which implement the
access to the HyNeSS database. On the other hand, the
client is an ordinary WWW browser which supports
Java applets. The query interface is implemented with
the Java language and executed by the WWW browser.

The sequence of a query processing is as follows:

(0) The Java applet of the query interface starts in
the WWW browser.

(1) The applet loads the schema information from
the remote server.

(2) The applet starts the universal query interface
based on the entity relationship model.

(3) The applet sends the composed query in the form
of an expression based on the predicate logic.

(4) The httpd throws the query to the HyNeSS data-
base via CGI program and the HyNeSS answers
the query.

The advantages of this approach can be summarized
as follows:

1. The interface, expression, and applet are indepen-
dent of a database schema.

! This sequence can be applied for any database
as long as its schema information is provided.

! Users can use a single same interface for any
databases.

2. Both the query interface and the query expression
have declarative semantics.

! Users only need to express the query declara-
tively without considering how it will be pro-
cessed by the server.

! Because both the entity relationship model and
the predicate logic have declarative semantics,
they can be directly converted into each other.

4 HyNeSS model

4.1 Outline

The HyNeSS stands for the Hyper-Network Storage
System and is designed to model network-oriented data
like hypermedia and hypertexts[5]. The HyNeSS model
is formerly called the S-object model which is presented
in [3, 4].

The HyNeSS model integrates the entity relation-
ship model and the predicate logic. In the conceptual
view, the HyNeSS model is an extended version of the
entity relationship model[1]. It models the real world
enterprise by entities, links, classes, and relationships.
Entities and links are lowest level objects of a database
and compose a network structure similar to semantic
networks. Classes and relationships are meta level ob-
jects of entities and links, respectively. A class is a set
of entities which is categorized by the semantic role of
entities, while a relationship is a set of links categorized
by the semantic role of links.

On the other hand, in the descriptive view, the Hy-
NeSS model is based on the predicate logic. It has one-
to-one mapping between the conceptual view and the
descriptive one. An entity corresponds to a constant,
a link to an atom, a class to a unary predicate, and a
relationship to a n-ary predicate. One of the advan-
tages of having the logic-based descriptive view is that
it enables to de�ne deductive rules for the conceptual
view. The HyNeSS database management system has
the deduction mechanism based on the function-free
de�nite program which incorporates the novel mecha-
nism to handle the procedural derivation[4]. We do not
mention its detail here because it is beyond the scope
of this paper.

The major property of the HyNeSS model is its
declarative semantics. In the conceptual view, it em-
ploys the plain network expression, while it employs
the function-free de�nite program in the descriptive
view. The procedural semantics, e.g., character string
matchings, image processing, mathematical computa-
tions, are encapsulated into predicates[3, 4]. With its
declarative semantics, the HyNeSS model enables users
to express what he/she wants to retrieve declaratively
and enables distributed sites to communicate with each
other in a declarative manner. Hence, the HyNeSS
model provides the basis of a universal query inter-
face and a universal expression for heterogeneous dis-
tributed digital libraries.

HyNeSS

HTTPD

Schema
Information

CGI
Program

Predicate Logic Based(3)

Query Expression

(1) Schema Information

E−R Model Based(2)

Query Interface

WWW Browser

Java Applet

Figure 2: System overview

4.2 De�nition

1. HyNeSS model

The HyNeSS model consists of six types of compo-
nents (E;C; T; L;R;D). E is a set of entities. C is
a set of classes. T is a set of types. L is a set of
links among entities. R is a set of relationships. D
is a set of domain constraints.

2. Entities

An entity is any substance, either conceptual or
physical one, which needs to be distinguished within
a database. Each entity has a unique identi�er
to distinguish itself from others. The current im-
plementation of the HyNeSS database management
system uses the hierarchical name space similar to
the one of UNIX �le systems. For example, a society
IPSJ has an identi�er /society/ipsj and an issue
of the IPSJ transaction whose volume and num-
ber are 35 and 1 has an identi�er /issue/society
/ipsj/tipsj/35/01. The role of entities are to
distinguish substances within a database. An en-
tity has no attribute, di�erently from the object-
oriented data model. Its attributes or structures
are represented by links and relationships.

3. Classes

Classes are sets of entities which are categorized by
the semantic role of entities. The role of classes is
to distinguish sets of entities and to be the basis of
the domain constraints. For example, the following
classes are de�ned for the prototype digital library:
societies, journals, issues, pages, images, articles,
and authors.

A class itself decides neither attributes nor struc-
tures of entities, di�erently from the object-oriented

data model. The constraints for entities are only
de�ned by domain constraints of relationships.

4. Types

A type is a kind of classes and represents a par-
ticular type of atomic data, e.g, strings, integers,
etc. A type is de�ned with three components (TC ,
TE , TD). TC is a class identi�er of the type, e.g.,
/class/string, /class/integer, etc. TE is an
encoder which converts each atomic data into its
unique identi�er, while TD is a decoder which con-
verts an identi�er to its corresponding data. By
providing such an encoder and a decoder, every
atomic data owns its unique identi�er and is treated
as one of entities within a database. For example,
the current prototype system encodes the character
string \Digital Library" into an identi�er /string
/Digital+Library and the integer value \1996"
into /integer/1996. Thus, the HyNeSS model as-
signs a unique identi�er to each atomic data and
treats them as entities. This approach can be re-
garded as a variant of a tagged architecture in which
every binary data carries a tag which represents its
data type.

5. Links

A link is a tuple of entities which represents a re-
lationship among entities. In the traditional no-
tation, a link is expressed with the ordered list of
entities with predicates. For example, the relation-
ship between an author /author/A and his article
/article/A is expressed as follows:

Author-Article (/author/A, /article/A)

On the other hand, the HyNeSS model uses an
order-independent notation to emphasize the sym-
metrical characteristics of terms. For example, the

Figure 3: Universal query interface

relationship above is expressed as follows:

[Author=/author/A, Article=/article/A]

Terms are composed of label and value pairs and the
predicate of a link is determined by the combina-
tion of labels. For the example above, the predicate
Author-Article is determined by the combination of
labels, Author and Article.

6. Relationships

Relationships are meta objects of links. A relation-
ship decides the predicate and the number of terms
of links, i.e., links which belong to the same rela-
tionship must have the same predicate and the same
number of terms. For example, the prototype sys-
tem de�nes the following relationships for articles:

Article-Type Article-Issue

Article-EnglishAbstract Article-Author

Article-JapaneseAbstract Article-FirstPage

Article-EnglishTitle Article-LastPage

Article-JapaneseTitle Article-Language

7. Domain Constraints

A domain constraint restricts the values of a term of
a relationship. A domain constraint is de�ned with
three types of components (DR, DT , DC). The
combination of DR and DT speci�es a term of a re-
lationship, and DC speci�es a set of classes which is
applicable to the term. In other words, it speci�es
that the values of the term DT of the relationship
DR must be an instance of one of the classes in-
cluded in DC . The role of domain constraints is to
specify the scope of relationships and prevents users
from creating nonsense links by mistake.

5 Universal query interface

5.1 Overview

Figure 3 shows the initial screen of the universal query
interface. It consists of two parts: a palette and a
canvas. The palette is located above and contains icons
of classes. The contents of the palette is determined
by the schema information supplied by each database.
The canvas below is a workbench of query expressions.
On the canvas, users construct queries in the form of
a network structure based on the entity relationship
model.

The primitives of the query construction are as fol-
lows:

(1) Select a class icon from the palette, then drag and
drop it on the canvas (Figure 4-(a)).

(2) Let the interface display the list of relationships
applicable to a particular icon by double-clicking it
on the canvas, then select one of the relationships
to produce a link on the canvas (Figure 4-(b) and
4-(c)).

(3) Let the interface indicate the icons applicable to
link ends (Figure 4-(d)).

(4) Let the interface pop up a dialog window by double-
clicking an icon with pressing the shift key and then
assign a constant value to the icon (Figure 4-(j)).

(5) Select icons to be displayed as the query result by
clicking them on the canvas (Figure 4-(l)).

The advantages of the universal query interface are
as follows:

1. It is independent of a database schema.

It adapts itself to each database schema on the fol-
lowing aspects:

� It decides the contents of its palette according
to the loaded schema information.

� It displays the list of applicable relationships
according to the domain constraints.

� It indicates icons applicable to a particular link
end according to the domain constraints.

By this adaptiveness, the query interface can be
applied for any database as long as its schema in-
formation is provided.

2. It is self-explanatory with respect to a database
schema.

Users can learn a database schema from the query
interface itself. They do not need to consult the
document describing the database schema. The in-
terface explains a database schema to users by ar-
ranging class icons on the palette, displaying the
list of applicable relationships, and indicating icons
applicable to link ends.

3. The constructed expression has declarative seman-

(a) An icon `article' is dropped on the canvas. (b) The list of applicable relationships are displayed.

(c) The relationship `Article-Author' is selected. (d) The applicable icons to the link end is displayed.

(e) The icon `author' is selected for the domain. (f) The list of applicable relationships is displayed.

Figure 4: Example of query construction

(g) `Author-EnglishName' is selected. (h) The domain of `EnglishName' is displayed.

(i) The class `string' is selected for the domain. (j) A constant is being assigned to the `string'.

(k) `Yoneda Tomohiro' is assigned to the `string'. (l) The icon `article' is selected for the result.

Figure 4: Example of query composition (cont'd)

(a) List of query result (b) resultant article

Figure 5: Example of query result

tics.

The conceptual view based on the entity relation-
ship model enables users to express a query declar-
atively without considering how it will be processed
by the server.

5.2 Example of query construction

1. A user selects what to retrieve from the class icons
on the palette. For example, the class `article' is
selected and dropped on the canvas in Figure 4-(a).

2. The user produces a link to specify a search con-
dition for the selected icon. By double-clicking the
icon, the list of applicable relationships is displayed
as shown in Figure 4-(b). The query interface con-
structs the list according to the schema information
supplied by the database.

3. If a relationship is selected from the list, a link of
the relationship is produced on the canvas. How-
ever, the other end of the link is a question mark as
shown in Figure 4-(c) because the icon of that end is
not speci�ed by the user yet. By double-clicking the
question mark, the applicable icons to that end are
indicated by the query interface as shown in Figure
4-(d) where the inapplicable icons are marked with
crosses. The query interface determines applicabil-
ity of icons according to domain constraints of the
relationship.

4. By selecting icons for link ends, a link between en-
tities is completed as shown in Figure 4-(e). The
user repeats the above sequence until the query ex-
pression represents what he/she wants to retrieve.
For example, in Figure 4-(f) to 4-(i), a link of the
relationship `Author-EnglishName' is added to the
icon `author'.

5. The user may assign a constant to icons as shown
in Figure 4-(j) where a character string \Yoneda,

Tomohiro" is assigned to the icon `string'.

6. Finally, the user selects the icon to be displayed as
the query result. Icons can be selected by clicking
them on the canvas. The query interface marks
selected icons by rectangles. For example, in Figure
4-(l), the icon `article' is selected. This expression
speci�es to display articles written by an author
whose English name is \Yoneda, Tomohiro".

Then the user submits the query to the server by
pressing the button \submit query". An example
of the query result is shown in Figure 5. Figure 5-
(a) shows the list of articles matched to the search
condition. By navigating through the anchor asso-
ciated to the items of the list, the user can view the
resultant articles as shown in Figure 5-(b).

6 Discussion

6.1 E�ectiveness of declarative expression

The major property of our approach is that we employ
declarative expressions for the query interface. Declar-
ative expressions are signi�cantly e�ective when queries
are more complicated. Figure 6-(a) and (b) represents
query expressions which speci�es the following search
conditions respectively:

(a) Display issues which contain articles written by
an author whose English name is \Yoneda, To-
mohiro".

(b) Display images of which resolutions are 100 DPI
and which are the �rst pages of articles written
by an author whose English name is \Yoneda,
Tomohiro".

It is much more di�cult to express these queries in
the form of query commands such as SQL. It is even
di�cult to write them in natural languages. Declar-
ative expressions are straight forward and easy to be

(a) (b)

Figure 6: Examples of more complicated queries

understood.

6.2 Applicability to other applications

Essentially, this approach is not restricted to digital
library applications. It can be applied to general het-
erogeneous distributed databases. However, we regard
that it is most e�ective for digital libraries because the
HyNeSS model is designed to model network-oriented
data such as hypermedia and hypertexts.

6.3 Future work

The desirable capabilities of the current implementa-
tion are as follows:

� Nested queries which enable the result of one
query to be used in another.

� Disjunctive expressions.

� Negative expressions.

We plan to incorporate these capabilities to capture
more semantics in query expressions.

7 Conclusion

In this paper, we presented the HyNeSS model and its
query interface which provide the basis for heteroge-
neous distributed digital libraries. The HyNeSS model
provides the universal modeling scheme for network-
oriented data like hypermedia and hypertexts. The ca-
pability of the HyNeSS model is demonstrated by de-
veloping its query interface. It is schema-independent,
self-explanatory, and declarative. Although its appli-
cation �eld is not restricted to digital libraries, it is
especially suitable for heterogeneous distributed digi-
tal libraries because the HyNeSS model is designed to
model the contents of digital libraries such as hyper-
media and hypertexts.

Acknowledgments

This research was partly supported by JSPS (Japan Soci-

ety for the Promotion of Science). The authors would like

to express their gratitude, for the helpful comments, to the

members of the joint research program, \A Study on a Dig-
ital Multimedia Library for Supporting Creative Research,"

sponsored by JSPS.

References

[1] Chen, P., P.-S., \The Entity-Relationship Model { To-

ward a Uni�ed View of Data," ACM Trans. Database

Systems 1, 1 (Mar 1976) 9{36.

[2] Crum, L., \University of Michigan Digital Library

Project," Communications of the ACM 38, 4 (Apr
1995) 63{64, http://http2.sils.umich.edu/UMDL/ .

[3] Katayama, N., Takasu, A., and Adachi, J., \A Data-

base with an Explicit Semantic Representation," The

Seventh International Conference on Industrial & En-

gineering Applications of Arti�cial Intelligence & Ex-

pert Systems (May 1994) 323{332.

[4] Katayama, N., Takasu, A., and Adachi, J., \A Logic-

Based Approach for Managing Structured Document

Data," Proc. of the International Symposium on Ad-

vanced Database Technologies and Their Integration

(ADTI'94) (Oct 1994) 245{252.

[5] Katayama, N., Takasu, A., and Adachi, J., \Design

and Implementation of a Storage System based on Hy-

permedia Network," IPSJ SIG Notes 95-DBS-104 (Jul

1995) 57{64 (written in Japanese).

[6] Lagoze, C. and Davis, J., R., \Dienst: An Architecture

for Distributed Document Libraries," Communications

of the ACM 38, 4 (Apr 1995) 47,

http://cs-tr.cs.cornell.edu/ .

[7] Sheth, A., P., Larson, J., A., \Federated Database
Systems for Managing Distributed Heterogeneous, and

Autonomous Databases," ACM Computing Surveys

22, 3 (Sep 1990) 183{236.

